legendre — associated Legendre functions
y = legendre(n,m,x [,normflag])
non negative integer or vector of non negative integers regularly spaced with increment equal to 1
non negative integer or vector of non negative integers regularly spaced with increment equal to 1
real (row) vector (elements of x must be in
the (-1,1) interval)
(optional) scalar string
When n and m are scalars,
legendre(n,m,x) evaluates the associated Legendre
function Pnm(x) at all the elements of x. The
definition used is :

where Pn is the Legendre polynomial of degree
n. So legendre(n,0,x) evaluates the
Legendre polynomial Pn(x) at all the elements of
x.
When the normflag is equal to "norm" you get a normalized version
(without the (-1)^m factor), precisely :

which is useful to compute spherical harmonic functions (see Example 3):
For efficiency, one of the two first arguments may be a vector, for
instance legendre(n1:n2,0,x) evaluates all the Legendre
polynomials of degree n1, n1+1, ..., n2 at the
elements of x and
legendre(n,m1:m2,x) evaluates all the Legendre
associated functions Pnm for m=m1, m1+1, ..., m2 at
x.
In any case, the format of y is :
max(length(n),length(m)) x length(x)
and :
y(i,j) = P(n(i),m;x(j)) if n is a vector y(i,j) = P(n,m(i);x(j)) if m is a vector y(1,j) = P(n,m;x(j)) if both n and m are scalars
so that x is preferably a row vector but any
mx x nx matrix is excepted and considered as an
1 x (mx * nx) matrix, reshaped following the column
order.
// example 1 : plot of the 6 first Legendre polynomials on (-1,1)
l = nearfloat("pred",1);
x = linspace(-l,l,200)';
y = legendre(0:5, 0, x);
clf()
plot2d(x,y', leg="p0@p1@p2@p3@p4@p5@p6")
xtitle("the 6 th first Legendre polynomials")
// example 2 : plot of the associated Legendre functions of degree 5
l = nearfloat("pred",1);
x = linspace(-l,l,200)';
y = legendre(5, 0:5, x, "norm");
clf()
plot2d(x,y', leg="p5,0@p5,1@p5,2@p5,3@p5,4@p5,5")
xtitle("the (normalised) associated Legendre functions of degree 5")
// example 3 : define then plot a spherical harmonic
// 3-1 : define the function Ylm
function [y] = Y(l,m,theta,phi)
// theta may be a scalar or a row vector
// phi may be a scalar or a column vector
if m >= 0 then
y = (-1)^m/(sqrt(2*%pi))*exp(%i*m*phi)*legendre(l, m, cos(theta), "norm")
else
y = 1/(sqrt(2*%pi))*exp(%i*m*phi)*legendre(l, -m, cos(theta), "norm")
end
endfunction
// 3.2 : define another useful function
function [x,y,z] = sph2cart(theta,phi,r)
// theta row vector 1 x nt
// phi column vector np x 1
// r scalar or np x nt matrix (r(i,j) the length at phi(i) theta(j))
x = r.*(cos(phi)*sin(theta));
y = r.*(sin(phi)*sin(theta));
z = r.*(ones(phi)*cos(theta));
endfunction
// 3-3 plot Y31(theta,phi)
l = 3; m = 1;
theta = linspace(0.1,%pi-0.1,60);
phi = linspace(0,2*%pi,120)';
f = Y(l,m,theta,phi);
[x1,y1,z1] = sph2cart(theta,phi,abs(f)); [xf1,yf1,zf1] = nf3d(x1,y1,z1);
[x2,y2,z2] = sph2cart(theta,phi,abs(real(f))); [xf2,yf2,zf2] = nf3d(x2,y2,z2);
[x3,y3,z3] = sph2cart(theta,phi,abs(imag(f))); [xf3,yf3,zf3] = nf3d(x3,y3,z3);
clf()
subplot(1,3,1)
plot3d(xf1,yf1,zf1,flag=[2 4 4]); xtitle("|Y31(theta,phi)|")
subplot(1,3,2)
plot3d(xf2,yf2,zf2,flag=[2 4 4]); xtitle("|Real(Y31(theta,phi))|")
subplot(1,3,3)
plot3d(xf3,yf3,zf3,flag=[2 4 4]); xtitle("|Imag(Y31(theta,phi))|")